Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5279, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127334

RESUMO

By darkening the snow surface, mineral dust and black carbon (BC) deposition enhances snowmelt and triggers numerous feedbacks. Assessments of their long-term impact at the regional scale are still largely missing despite the environmental and socio-economic implications of snow cover changes. Here we show, using numerical simulations, that dust and BC deposition advanced snowmelt by 17 ± 6 days on average in the French Alps and the Pyrenees over the 1979-2018 period. BC and dust also advanced by 10-15 days the peak melt water runoff, a substantial effect on the timing of water resources availability. We also demonstrate that the decrease in BC deposition since the 1980s moderates the impact of current warming on snow cover decline. Hence, accounting for changes in light-absorbing particles deposition is required to improve the accuracy of snow cover reanalyses and climate projections, that are crucial for better understanding the past and future evolution of mountain social-ecological systems.


Assuntos
Mudança Climática , Neve , Carbono , Poeira/análise , Fuligem , Água
2.
Clim Serv ; 22: 100215, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34239989

RESUMO

Ski tourism plays a major socio-economic role in the snowy and mountainous areas of Europe such as the Alps, the Pyrenees, Nordic Europe, Eastern Europe, Anatolia, etc. Past and future climate change has an impact on the operating conditions of ski resorts, due to their reliance on natural snowfall and favorable conditions for snowmaking. However, there is currently a lack of assessment of past and future operating conditions of ski resorts at the pan-European scale in the context of climate change. The presented work aims at filling this gap, as part of the "European Tourism" Sectoral Information System (SIS) of the Copernicus Climate Change Services (C3S). The Mountain Tourism Meteorological and Snow Indicators (MTMSI) were co-designed with representatives of the ski tourism industry, including consulting companies. They were derived from statistically adjusted EURO-CORDEX climate projections (multiple GCM/RCM pairs for RCP2.6, RCP4.5 and RCP8.5) using the UERRA 5.5 km resolution surface reanalysis as a reference, used as input to the snow cover model Crocus, with and without accounting for snow management (grooming, snowmaking). Results are generated for 100 m elevation bands for NUTS-3 geographical areas spanning all areas relevant to ski tourism in Europe. This article introduces the underpinning elements for the generation of this product, and illustrates results at the pan-European scale as well as for smaller scale case studies. A dedicated visualization app allows for easy navigation into the multiple dimensions of this dataset, thereby fulfilling the needs of a broad range of users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...